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Abstract
Recently, the TTS systems based on diffusion probabilistic
models have demonstrated the strong ability to generate state-
of-the-art results on many TTS datasets. However, most of
them are very slow at the inference phase and can not explore
the interpretable representation of latent space. On the other
hand, another type of generative models named Variational
Autoencoders(VAEs) can manipulate the low-dimensional la-
tent space but often obtain low-quality results. In this paper,
we incorporate the VAE framework and diffusion model to an
end-to-end Text-to-Speech system, so that it can not only ob-
tain good results but also has the ability to manipulate the la-
tent representations. Finally, the proposed model shows good
performance of generated results and style control.

Introduction
With the rapid development of deep learning, End-to-end
text-to-speech models which generate speech directly from
characters or phonemes have made great progress (Wang
et al. 2017; Shen et al. 2018; Ping et al. 2018; Ping, Peng,
and Chen 2019; van den Oord et al. 2016; Prenger, Valle,
and Catanzaro 2019). These models usually consists of two
parts, namely acoustic model and vocoder. The acoustic
model transforms normalized text symbols to time-aligned
features, such as mel-spectrogram, while the vocoder trans-
forms time-aligned features to audio samples.

The auto-regressive (AR) model, such as Tacotron (Wang
et al. 2017) and Tacotron2 (Shen et al. 2018), is a typical
framework of autoregressive modelling, which takes char-
acter or phoneme sequences as input and generates inter-
mediate representation frame by frame. The AR models can
achieve a high speech quality but suffer from a low decod-
ing speed because of the nature of autoregressive modelling.
The other family is the non-autogressive model. These mod-
els can speed up the inference process by utilizing paral-
lel spectrogram generation. FastSpeech (Ren et al. 2019)
uses a well-trained autoregressive teacher model to guide the
training process and learn the alignment between text and
speech. FastSpeech2 (Ren et al. 2020) utilizes an external
force aligner to extract durations. Flow based TTS models
are a family of non-autoregressive TTS models, which trans-
form a simple initial density into a complex one by applying
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a series of invertible transformations. One group of models
are based on autoregressive transformations, including au-
toregressive flow (AF) and inverse autoregressive flow (IAF)
(Kingma et al. 2016; Papamakarios, Pavlakou, and Murray
2017; Huang et al. 2018). AF is similar to autoregressive
models, which performs parallel density evaluation and se-
quential synthesis. IAF performs parallel synthesis but se-
quential density evaluation contrastively. Parallel WaveNet
(Oord et al. 2018) and ClariNet (Ping, Peng, and Chen 2019)
distill an IAF from a pretrained autoregressive WaveNet,
which complicate the training process and increases the cost
of development. Another group of flow based models are
based on bipartite transformations (Dinh, Sohl-Dickstein,
and Bengio 2016; Kingma and Dhariwal 2018), which pro-
vide likelihood based training and parallel synthesis. These
models can generate speech efficiently.

Another generative framework called denoising diffusion
probabilistic model has shown state-of-the-art performance
in many fields, such as image generation and audio synthe-
sis (Ho, Jain, and Abbeel 2020; Sohl-Dickstein et al. 2015;
Song et al. 2020; Huang et al. 2022c; Jeong et al. 2021). The
denoising diffusion models can be stably optimized accord-
ing to maximum likelihood and also enjoy the freedom of
architecture choices, which is the limited in the flow based
TTS models.

In the aspect of improving the expressiveness of synthe-
sized speech, Variational Autoencoder (VAE) (Kingma and
Welling 2013), which explicitly models latent variables, is
one of the most popular approaches to learn disentangled
latent representations of speech. VAE-Loop (Akuzawa, Iwa-
sawa, and Matsuo 2018) and VAE-TTS (Zhang et al. 2019)
both ultilize the VAE framework to learn the latent repre-
sentations of original speech, but use the VoiceLoop (Taig-
man et al. 2018) and Tacotron2 (Shen et al. 2018) as the
decoder respectively in an autoregressive manner. FHVAE
(Hsu, Zhang, and Glass 2017) and GMVAE-Tacotron (Hsu
et al. 2018) apply the graphical model and VAE to model
more fine-grained latent representations of speech under the
Bayesian theory. These works demonstrate that VAE has the
ability of learning disentanglement of latent representations,
and furthermore can interpolate or sampling between latent
representations.

In this work, we combine the properties of diffusion
model and VAE to make the the final model high-quality,



easy to train and expressive. We propose VAEDiff-TTS, a
non-autoregressive TTS model that integrates VAE frame-
work and Diffusion model to generate high quality results
and enable manipulation in the latent space. In order to
improve the sampling speed of DDPM, we also introduce
the accelerated sampling method (Song, Meng, and Ermon
2020) to this system. The contributions of our work are as
follows:

• To the best of our knowledge, it is the first time that a
VAE framework incorporated with a denoising diffusion
probabilistic model was applied to speech synthesis.

• We show that VAEDiff-TTS generates comparable high
fidelity audios in terms of Mean Opinion Score (MOS)
compared to VAE-TTS, Diff-TTS and ProDiff.

• We analyze the style control and style transfer of
VAEDiff-TTS. VAEDiff-TTS can effectively control the
latent representations and perform style transfer.

Related work
Text-to-Speech Models. Text-to-Speech (TTS) is an es-
sential component of intuitive human-machine communi-
cation system. TTS system can generate an output acous-
tic sequence given an input text sequence. Concatenative
TTS (BLACK 1997) and statistical parametric TTS (Tokuda
et al. 2000; Ze, Senior, and Schuster 2013) are the two
most successful TTS techniques in the past decades. How-
ever, both of them have complex pipelines and and the
speech generated often sounds unnatural. With the contin-
uous development of deep learning, a lot of end-to-end
TTS systems have been proposed to achieve high-fidelity
speech synthesis. These models usually consist of two parts
namely acoustic model and vocoder respectively. The acous-
tic model first generates frame-level intermediate represen-
tations given text, while the vocoder generates the audio
samples conditioned on the intermediate representations. We
focus on the first part, acoustic modelling, in our work.

Diffusion-based Generative Models. Recently, the gen-
erative model based on diffusion models have attracted
much attention in image and speech generation. Diffusion
models can be divided into two categories: discrete time
diffusion model, which based on denoising diffusion proba-
bilistic model (DDPM) (Sohl-Dickstein et al. 2015; Ho, Jain,
and Abbeel 2020) and continuous time diffusion model,
which based on stochastic differential equation (SDE) (Song
et al. 2020). This paper mainly discusses on DDPM. In re-
cent years, the TTS system based on DDPM mainly fo-
cuses on two aspects, Vocoder and Acoustic model. Vocoder
mainly includes FastDiff (Huang et al. 2022a), Diffwave
(Kong et al. 2020), etc. Acoustic model mainly includes
ProDiff (Huang et al. 2022c), Diff-TTS (Jeong et al. 2021),
Grad-TTS (Popov et al. 2021), etc. However, most of these
systems mainly utilize the advantages of DDPM itself to
make the final results achieve better quality without explor-
ing the latent space. This paper proposes that VAE can be
used to model the attributes of data latent representations to
mine the late space, and DDPM can be used to refine, thus
combining their advantages respectively, generating good

results while allowing style control, and analyzing the im-
pact of DDPM on the latent space.

VAE-based Generative Models. Variational autoencoder
(VAE) (Kingma and Welling 2013) has been applied for la-
tent representation learning of natural speech for years. It
models either the generative process of raw waveform, or
spectrograms. In previous work, autoregressive networks are
employed as the decoder of VAE (Akuzawa, Iwasawa, and
Matsuo 2018; Zhang et al. 2019), but they can be quite
slow at synthesis. In this work, we employ FastSpeech2
(Ren et al. 2020) as the decoder of VAE, so that it can not
only synthesize speech in parallel, but also attain disentan-
gled representations of speech and control the synthesized
speech.

Style Controlling and Transferring. There are already
several methods to style controlling and transferring in TTS
field. We can classify them to two categories. One is the
global style modelling, such as global style token (GST)
(Wang et al. 2018) and VAE-TTS (Zhang et al. 2019). The
other is based on fine-grained latent variables (Sun et al.
2020a,b). GenerSpeech (Huang et al. 2022b) proposed a
multi-level style adaptor and a generalizable content adapter
to model style-agnostic and style-specific variations sepa-
rately. Although the fine-grained latent variables can model
more elaborate style and then do style transfer better, they
do not have the ability to explore the latent space. So, We
utilize VAE to have access to the latent space , and integrate
with a diffusion based refiner to obtain high-quality results.

Model
In this section, we first review Variational Autoencoder and
Denoising Diffusion Probabilistic Model. And then, we dis-
cuss the architecture design of our VAEDiff-TTS and the
entire training pipeline in detail. Overall, we design a non-
autoregressive two-phase neural network architecture for
VAEDiff-TTS, which first trains a VAE based controllable
TTS and secondly trains the DDPM by refining the results
from first phase. We also analyzed the influence of VAE and
DDPM latent space respectively. By combining the advan-
tages of variational autoencoder and diffusion probabilistic
model, the final system is controllable and high-fidelity.

Variational Autoencoder

The goal of generative machine learning approaches is to
model the data distribution p(x) . The Variational Autoen-
coder (VAE) does so by learning to reconstruct input data
from a compressed latent code. An underlying idea of the
model is that real world data can be represented by a rela-
tively small set of higher level features. It is assumed that
the observed data distribution p(x) is generated by some
random process from a random latent variable z. The true
posterior distribution pθ(z|x) is intractable because of the
indifferentiable marginal likelihood pθ(x). To address this
problem, a recognition model qϕ(z|x) is introduced as an
approximation to the true posterior distribution pθ(z|x). Fi-
nally, we can get the formulation of logpθ(x) as shown in
equation (1).



logpθ(x) ≥ Eqϕ(z|x)[log
pθ(x, z)

qϕ(z|x)
]

= Eqϕ(z|x)[logpθ(x|z)]−DKL(qϕ(z|x)||pθ(z))
(1)

The first term in Equation (1) measures the reconstruction
likelihood of the decoder from the variational distribution;
this ensures that the learned distribution is modelling effec-
tive latents that the original data can be regenerated from.
The second term measures how similar the learned varia-
tional distribution is to a prior belief held over latent vari-
ables, minimizing this term encourages the encoder to ac-
tually learn a distribution rather than collapse into a Dirac
delta function. The encoder of the VAE is commonly chosen
to model a multivariate Gaussian with diagonal covariance,
and the prior is often selected to be a standard multivariate
Gaussian:

qϕ(z|x) = N(z;µϕ(x), σ
2
ϕ(x)I) (2)

p(z) = N(z; 0, I) (3)
In practice, µ(x) and σ2(x) are learned from observed

dataset via neural network which can be viewed as an en-
coder. Because each z is generated by a stochastic sampling
procedure, which is generally non-differentiable, the repa-
rameterization trik is introduced to VAE framework. Thus,
each z is computed as a deterministic function of input x and
auxiliary noise variable ϵ, where ⊙ represents an element-
wise product.

z = µϕ(x) + σϕ(x)⊙ ϵ (4)

After training a VAE, generating new data can be performed
by sampling directly from the latent space and then running
it through the decoder.

Denoising Diffusion Probabilistic Models
The concept of diffusion was first defined in (Sohl-Dickstein
et al. 2015) and then researchers proposed DDPM (Ho, Jain,
and Abbeel 2020) which greatly promotes the development
of generative models. Diffusion process and reverse process
are given by diffusion probabilistic models, which could be
used for the denoising neural networks θ to learn data distri-
bution. With the predefined fixed noise schedule β and dif-
fusion step t, we compute the corresponding constants re-
spective to diffusion and reverse processes:

αt = 1− βt, ᾱt =

t∏
t=1

αt, (5)

Similar as previous work (Sohl-Dickstein et al. 2015; Ho,
Jain, and Abbeel 2020), we define the data distribution as
q(x0). The diffusion process is defined by a fixed Markov
chain from data x0 to the latent variable xT :

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI), (6)

q(x1, · · · , xT |x0) =
T∏
t=1

q(xt|xt−1), (7)
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Figure 1: The structure of VAEDiff-TTS.

The reverse process aims to recover samples from Gaus-
sian noises, which is Markov chain from xT to x0 parame-
terized by shared θ:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t), σ
2
t I) (8)

pθ(x0, · · · , xT−1|xT ) =
T∏
t=1

pθ(xt−1|xt), (9)

Finally, we can get the training objective as follows:

LDDPM = Et,x0,ϵ[||ϵ−ϵθ(
√
ᾱtx0+

√
1− ᾱtϵ, t)||22] (10)

For sampling phase, the sampling formulation is computed
as follows:

xt−1 = µθ(xt, t) + σtz

=
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz,
(11)

where p(z) = N(z; 0, I) and σt =
√

1− ¯αt−1

1−ᾱt βt. As a result,
the final data distribution p(x0) is obtained through iterative
sampling over all of the time steps.

Proposed VAEDiff-TTS
Our proposed VAEDiff-TTS inherits all the advantages of
FastSpeech, including fast speech synthesis speed and few
words skipping problems. In order to explore the latent space
of speech and control style unsupervisedly, we introduce
VAE framework to FastSpeech to have access to the latet
space. By introducing the diffusion based refiner, the final
system of VAEDiff-TTS could generate comparable results
with some other good systems.

The structure of VAEDiff-TTS is shown in Fig.1. The pro-
posed architecture is divided into three parts. First, we de-
scribes the VAE framework of our VAEDiff-TTS. Here ,we



adopt a recurrent reference encoder followed by two fully
connected layers to model the values of mean and variance.
We use the same architecture for reference encoder first pro-
posed in (Skerry-Ryan et al. 2018) which consists of six 2-D
convolutional layers followed by a GRU layer. The output,
which denotes some embedding of the reference audio, is
then passed through two separate fully connected layers to
generate the mean and variance of latent variables z. Then
z is derived by reparameterization trick. And then, z should
be passed through a fully connected layer to make sue the
dimension equal to text encoder. Second, we describes the
Acoustic model of our system. We utilize FastSpeech (Ren
et al. 2019) as our acoustic model which generate mel-
spectrograms from characters or phonemes. The difference
is that we have to receive the embedding of z from the first
part, we add z to the embedding of text encoder, and we use
Montreal forced aligner (McAuliffe et al. 2017) (MFA) in-
stead of the attention based alignment teacher in FastSpeech.
The FFT block and Variance adapter have the same architec-
ture as FastSpeech. Third, we describes the proposed diffui-
son based refiner. The model architecture of diffusion based
refiner is mainly to model the reverse process of DDPM, we
utilize the U-Net model from (Nichol and Dhariwal 2021)
to model our diffusion based refiner. Finally, the results gen-
erated from diffusion based refiner are passed through Fast-
Diff Vocoder (Huang et al. 2022a) to reconstruct the wave-
form. As for the training objective, inspired by (Pandey et al.
2022), the total loss of our proposed model is shown in equa-
tion (12):

Loss = Eqψ(z|x0)[pθ(x0|z)]−DKL(qψ(z|x0)||p(z))

+ Eq(z|x0)[Eq(x1:T |x̂0,x0)[
pϕ(x0:T |x̂0)
q(x1:T |x̂0, x0)

]]

(12)

where, x0 represents the original data, x̂0 represents the data
generated from VAE framework. ψ and ϕ represents the pa-
rameters of VAE encoder and reverse process of DDPM re-
spectively.

Experiments and Analysis
Experiment Setup
As for dataset, We used VCTK Corpus (Yamagishi et al.
2019) (VCTK), which was recorded by 109 native English
speakers with various accents. There are 44081 audio clips
through preprocessing, we use 43001 samples from it for
training and remaining 1080 utterances for testing and half
of test set for valid set. 80 dimensional mel-spectrograms
were extracted with frame length 64 ms and frame shift 16
ms.

We used GST and VAE-FastSpeech as our baseline model
for style control and transfer and FastSpeech as our base-
line model for generated quality comparison, where VAE-
FastSpeech simply modifies the acoustic model to Fast-
Speech from VAE-Tacotron. The hyperparameters are set
according to (Ren et al. 2019), the noise schedule in the
DDPM forward process was set to a linear schedule between
β1 = 10−4 and β2 = 0.02 during training, the dimension of
latent variable z in VAE was set to 32.

At inference stage, in evaluation of style control, we di-
rectly manipulate z without going through the VAE encoder,
and then feed manipulated z to the remaining model. With
regard to evaluation of style transfer, we feed audio clips
as reference and go through the whole model. Both parallel
and non-parallel style transfer audios are generated and eval-
uated. And we analyzed the latent space of VAE and DDPM
respectively.

Speech Synthesis Quality
For the subjective evaluation of audio fidelity, we performed
a 5-scale Mean Opinion Score (MOS) test with 30 audio ex-
amples per model and 12 participants. The audio examples
were randomly selected from the test dataset. The second
phase of VAEDiff-TTS, which is also called diffusion based
refiner (Refiner), was trained with 100 time-step and synthe-
sised samples by accelerating the sampling speed by DDIM
(Song, Meng, and Ermon 2020). The performance is as good
as Diff-TTS abd VITS (Kim, Kong, and Son 2021). It indi-
cates that accelerated sampling is a practical method without
significantly sacrificing speech quality.

Table 1: Comparison with other text-to-speech models in
terms of synthesized quality

MethodMethodMethod MOSMOSMOS
GT 4.51

GT(Mel+FastDiff) 4.33
FastSpeech 4.06

VITS 4.38
Diff-TTS 4.35
ProDiff 4.17

VAEDiff-TTS(T=100) 5
VAEDiff-TTS(T=50) 5
VAEDiff-TTS(T=10) 5

Style Control
It is known from (Bowman et al. 2015) that VAE sup-
ports smmothly interpolation and continuous sampling be-
tween latent representations. And DDPM can be consid-
ered as a special form of VAE (Luo 2022). Thus, the pro-
posed VAEDiff-TTS model consists of two types of latent
representations: the low-dimensional VAE latent code zvae
and the DDPM intermediate representations x1:T associated
with the DDPM reverse process. We analyze the effects of
manipulating both zvae and zT .

We first do interpolation in the VAE latent space zvae.
We got two VAE latent code z1vae and z2vae by feeding two
different audios to the VAE encoder. We then perform linear
interpolation between z1vae and z2vae to obtain intermediate
VAE latent codes z̃vae = λz1vae + (1 − λ)z2vae(0 < λ <
1), which are then fed into the remaining model to generate
corresponding controlled samples.

We then do interpolation in the DDPM latent space with
fixed zvae. We got a VAE latent code zvae the same way as
above. With a fixed zvae, we then sample two initial DDPM
representations x1T and x2T from p(xT ). We then perform



Figure 2: The results of Style control. two z were obtained by reference 1 and reference 2 in the first row. The second row shows
that mel-spectrograms generated by interpolation by two z in different lambda.

linear interpolation the same way between x1T and x2T with
a fixed zvae to generate interpolated samples.

We also infer that VAE and Diffusion both have the poten-
tial of exploring latent space, and VAE control the global in-
formation as well as Diffusion control the local details from
the experiment results.

Style Transfer

Figure 3: The results of Style transfer. The left picture de-
scribes the mel-spectrogram of reference speech. The right
pictures describe the mel-spectrogram referenced on the left
reference speech in VAE-FastSpeech and GST respectively.

As for style transfer, we could conduct our experiments
for two types: Parallel and Non-Parallel style transfer, which
are categorized by the text consistency between reference
and generated speech samples.

We evaluated the performance of style transfer subjec-
tively by conducting a crowd-sourcing ABX preference tests
on parallel and non-parallel transfer. For parallel style trans-
fer, 30 audio clips with their texts are randomly selected
from test set. For non-parallel style transfer, 30 sentences
of text and 30 other reference audio clips are randomly se-
lected to generate speech. The baseline voice is generated
from the GST model and VAE-FastSpeech model we have

built. Each case in ABX test is judged by 12 juders. The cri-
terion in rating is ”which one’s speaking style is closer to the
reference style”, for each reference, the listeners were asked
to choose a prefered one among the samples synthesized by
baseline models and proposed VAEDiff-TTS.

Table 2: The ABX preference test results for parallel style
transfer and non-parallel style transfer.

Method Parallel Non-Parallel
GST 100% 100%

Neutral 100% 100%
VAEDiff-TTS(T=100) 100% 100%

VAE-FastSpeech 100% 100%
Neutral 100% 100%

VAEDiff-TTS(T=100) 100% 100%

The results show that our proposed VAEDiff-TTS can bet-
ter model the latent representations, which results in better
style transfer.

Conclusion
In this work, we presented a speech synthesis model that
integrates the properties of VAE and diffusion models, en-
abling the system to generate samples of better quality and
provide a DDPM latent space except for the VAE latent
space, which gives us the way to control the latent space
by using diffusion models. We have demonstrated the latent
space interpolation and style transfer. The proposed model
shows good performance in synthesized quality, style con-
trol and style transfer, which outperforms GST model and
VAE-FastSpeech via ABX test.

Notice
Due to time, the experiment was not completed completely,
so the rest of Table 1 and Table 2 could not get the exper-



imental results. There is also a lack of some comparative
experiments on style control and transfer.

References
Akuzawa, K.; Iwasawa, Y.; and Matsuo, Y. 2018. Expres-
sive Speech Synthesis via Modeling Expressions with Vari-
ational Autoencoder. Proc. Interspeech 2018, 3067–3071.
BLACK, A. 1997. Automatically clustering similar units for
unit selection in speech synthesis. Proc. EUROSPEECH,
Sep 1997.
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefow-
icz, R.; and Bengio, S. 2015. Generating sentences from a
continuous space. arXiv preprint arXiv:1511.06349.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2016. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising diffusion
probabilistic models. Advances in Neural Information Pro-
cessing Systems, 33: 6840–6851.
Hsu, W.-N.; Zhang, Y.; and Glass, J. 2017. Unsupervised
learning of disentangled and interpretable representations
from sequential data. Advances in neural information pro-
cessing systems, 30.
Hsu, W.-N.; Zhang, Y.; Weiss, R. J.; Zen, H.; Wu, Y.; Wang,
Y.; Cao, Y.; Jia, Y.; Chen, Z.; Shen, J.; et al. 2018. Hierarchi-
cal Generative Modeling for Controllable Speech Synthesis.
In International Conference on Learning Representations.
Huang, C.-W.; Krueger, D.; Lacoste, A.; and Courville, A.
2018. Neural autoregressive flows. In International Confer-
ence on Machine Learning, 2078–2087. PMLR.
Huang, R.; Lam, M. W.; Wang, J.; Su, D.; Yu, D.; Ren, Y.;
and Zhao, Z. 2022a. FastDiff: A Fast Conditional Diffusion
Model for High-Quality Speech Synthesis. arXiv preprint
arXiv:2204.09934.
Huang, R.; Ren, Y.; Liu, J.; Cui, C.; and Zhao, Z. 2022b.
GenerSpeech: Towards Style Transfer for Generalizable
Out-Of-Domain Text-to-Speech Synthesis. arXiv preprint
arXiv:2205.07211.
Huang, R.; Zhao, Z.; Liu, H.; Liu, J.; Cui, C.; and Ren, Y.
2022c. Prodiff: Progressive fast diffusion model for high-
quality text-to-speech. In Proceedings of the 30th ACM In-
ternational Conference on Multimedia, 2595–2605.
Jeong, M.; Kim, H.; Cheon, S. J.; Choi, B. J.; and Kim,
N. S. 2021. Diff-tts: A denoising diffusion model for text-
to-speech. arXiv preprint arXiv:2104.01409.
Kim, J.; Kong, J.; and Son, J. 2021. Conditional variational
autoencoder with adversarial learning for end-to-end text-to-
speech. In International Conference on Machine Learning,
5530–5540. PMLR.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative
flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31.
Kingma, D. P.; Salimans, T.; Jozefowicz, R.; Chen, X.;
Sutskever, I.; and Welling, M. 2016. Improved variational
inference with inverse autoregressive flow. Advances in neu-
ral information processing systems, 29.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Kong, Z.; Ping, W.; Huang, J.; Zhao, K.; and Catanzaro, B.
2020. Diffwave: A versatile diffusion model for audio syn-
thesis. arXiv preprint arXiv:2009.09761.
Luo, C. 2022. Understanding diffusion models: A unified
perspective. arXiv preprint arXiv:2208.11970.
McAuliffe, M.; Socolof, M.; Mihuc, S.; Wagner, M.; and
Sonderegger, M. 2017. Montreal Forced Aligner: Trainable
Text-Speech Alignment Using Kaldi. In Interspeech, vol-
ume 2017, 498–502.
Nichol, A. Q.; and Dhariwal, P. 2021. Improved denoising
diffusion probabilistic models. In International Conference
on Machine Learning, 8162–8171. PMLR.
Oord, A.; Li, Y.; Babuschkin, I.; Simonyan, K.; Vinyals,
O.; Kavukcuoglu, K.; Driessche, G.; Lockhart, E.; Cobo, L.;
Stimberg, F.; et al. 2018. Parallel wavenet: Fast high-fidelity
speech synthesis. In International conference on machine
learning, 3918–3926. PMLR.
Pandey, K.; Mukherjee, A.; Rai, P.; and Kumar, A. 2022.
Diffusevae: Efficient, controllable and high-fidelity gen-
eration from low-dimensional latents. arXiv preprint
arXiv:2201.00308.
Papamakarios, G.; Pavlakou, T.; and Murray, I. 2017.
Masked autoregressive flow for density estimation. Ad-
vances in neural information processing systems, 30.
Ping, W.; Peng, K.; and Chen, J. 2019. ClariNet: Parallel
Wave Generation in End-to-End Text-to-Speech. In Interna-
tional Conference on Learning Representations.
Ping, W.; Peng, K.; Gibiansky, A.; Arik, S. Ö.; Kannan, A.;
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